首页| 行业标准| 论文文档| 电子资料| 图纸模型
购买积分 购买会员 激活码充值

您现在的位置是:团子下载站 > 其他 > 光学技术之光切成像等技术在生物学领域的研究

光学技术之光切成像等技术在生物学领域的研究

  • 资源大小:0.1 MB
  • 上传时间:2021-11-20
  • 下载次数:0次
  • 浏览次数:81次
  • 资源积分:1积分
  • 标      签: 光学技术

资 源 简 介

在过去十年中对生物学研究影响最深的十大技术盘点。二代测序、CRISPR、单分子技术、光切成像、细胞重编程、光遗传学、超高分辨率显微镜等纷纷上榜。其中多种光学方法和仪器用在这些技术之上,比如:荧光显微镜、荧光探针和图像分析技术、核磁共振光谱、双光子激发、光学显微镜等等。   光切成像Light-sheeTImaging   光切成像这个老技术迎来了自己的第二春,这是因为成像设备(包括显微镜和相机)、荧光探针和图像分析技术得到了很大的改进。光切成像技术利用很薄的一层光来照射样品,而不是通过点光源或全场照明,能够快速地对生物样品进行高分辨的三维成像,同时降低了光毒性。神经学和发育生物学的研究者们,正在许多生物中用光切成像研究基本的生物学过程,例如胚胎发育和大脑功能。(延伸阅读:2013生命科学七大进展)   基于质谱分析的蛋白质组学Massspectrometry–basedproteomics   十年前,基于质谱分析的蛋白质组学研究还是一个相对小众的领域,传统细胞生物学家对它并不熟悉。然而,质谱分析仪的速度和性能在这十年迅速提升,样品制备、实验设计和数据分析也取得了巨大的进步,数据可重复性和全面性的许多问题得以解决。这些发展导致这一领域焕发了蓬勃的生机。对特定细胞状态的蛋白质组进行深入定量的图谱分析,过去需要仪器运行好几天,现在只要几个小时就能完成。现在,许多研究者通过质谱分析在系统水平上研究蛋白的功能,比如对蛋白质翻译后修饰和蛋白质互作进行图谱分析。   结构生物学Structuralbiology   随着结构测定流程(从蛋白表达到结晶)的不断优化,用X射线晶体学技术分析可溶性小蛋白的原子结构基本已经成为了常规。研究者们在此基础上解析了许多颇具挑战的蛋白结构,比如膜蛋白和大蛋白复合体,这些蛋白生成的量少而且很难结晶。这十年来,X射线晶体衍射的样本制备、结晶和数据分析得到了大幅改良。与此同时,其他结构分析技术也在快速发展,比如核磁共振光谱(nuclearmagneTIcresonancespectroscopy)和单颗粒冷冻电镜。更有X射线无电子激光器(X-rayfreeelectronlaser)等新兴技术涌现出来。这些技术进步将帮助人们解决各种各样的分子结构。   细胞重编程Cellularreprogramming   iPS技术能够通过重编程令细胞重新获得多能性。该技术生成的诱导多能干细胞(iPSC)可以进行扩增,它们理论上可以生成任何类型的细胞,用于研究疾病和筛选药物。现在,许多实验室都能通过iPS生成具有特定遗传学背景的人类细胞,不过人们仍在探索诱导iPSC分化的更好方法。iPS技术热潮也使直接重编程重新受到了关注,直接重编程可通过外源转录因子,直接将一种终末分化细胞转变为另一种终末分化细胞。
VIP VIP