首页| 行业标准| 论文文档| 电子资料| 图纸模型
购买积分 购买会员 激活码充值

您现在的位置是:团子下载站 > 电子资料 > 如何使用GaAs工艺技术实现可变增益功率放大器MMIC的设计

如何使用GaAs工艺技术实现可变增益功率放大器MMIC的设计

  • 资源大小:0.24 MB
  • 上传时间:2021-07-28
  • 下载次数:0次
  • 浏览次数:89次
  • 资源积分:1积分
  • 标      签: MMIC GaAs 功率放大器

资 源 简 介

根据电压控制增益电路理论及放大器设计原理,设计制作了一种基于GaAs工艺的可变增益功率放大器单片微波集成电路(MMIC)。采用电路仿真ADS软件进行了原理图及版图仿真,研究了增益控制电路在放大器中的位置对性能的影响。最终实现了在6~9GHz频率范围内,1dB压缩点输出功率大于33dBm,当控制电压在-1~0V之间变化时,放大器的增益在5~40dB之间变化,增益控制范围达到了35dB。将功率放大器与增益控制电路制作在同一个单片集成电路上,面积仅为3.5mm×2.3mm,具有灵活易用、集成度高和成本低的特点,可广泛应用于卫星通信和数字微波通信等领域。甚小口径终端(verysmallapertureterminal,VSAT)和数字微波通信(也称P2P通信)系统为商用微波无线信息传输系统,具有覆盖范围大、集成化程度高、对所有地点提供相同的业务种类和服容性好、扩容成本低、所需时间短、通信质量好和安装方便的特点。功率放大器是微波无线信息传输系统的核心元器件,其性能直接影响发射机的作用半径、线性特性以及整个系统的效率,它通常是系统中成本最高的元器件。当代微波无线信息传输系统小型化的趋势越来越明显,这就要求元器件的集成度越来越高。国外开展商用单片功率放大器研究较早,其中日本Eudyna公司的产品性能较佳,占领的市场份额最大,美国HitTIte公司和Triquint公司也在近两年推出了相应的产品。中国在GaAs材料生长和器件研制方面也积极开展了相关的研究工作。由于该功率放大器应用于商用领域,所以对其性能和成本都有较高的要求,本文通过电路设计,将常规功率放大器的功能进行扩展,增加增益控制功能,能够在实现系统小型化的同时,降低成本,同时,不会影响功率放大器的输出功率和效率等相关指标。本文采用目前制作微波单片集成电路成熟的GaAs赝高电子迁移率晶体管(pseudomorphichighelectronmobilitytransistor,PHEMT)工艺进行多功能功率放大器的研制,其工艺稳定,成品率高,在缩短研发周期和降低成本方面具有不可替代的地位。本文研制的多功能功率放大器单片集成电路的面积与同样指标的功率放大器面积一样,约为8mm2,传统室外单元的电压控制可变衰减器(voltagevariableattenuator,VVA)的面积约为1.7mm2,可见文中的多功能功率放大器将芯片面积节省了17.5%,有利于系统的小型化和成本的降低。1增益控制电路的设计原理增益控制电路的作用是通过改变控制电压,达到改变放大器增益的目的。增益控制电路在放大器中的位置至关重要,若放置于放大器的末级,会由于自身的损耗而影响输出功率,放置于中间,会使放大器的中间级因无法将末级推饱和,从而影响效率。通过以上分析,将增益控制电路放置于放大器的第一级。增益控制电路的原理如图1所示,由两个场效应晶体管(fieldeffecttransistor,FET)组成,FET1的漏极与FET2的源极连接在一起,射频信号从FET1的栅极输入,从FET2的漏极输出。图1中:Vc为控制电压;Vgs为栅压;Vdd为漏压;V1表示两个FET连接点的电压;Ids为FET1和FET2的漏极到源极的电流,图1中FET1的源极和FET2的漏极连接于同一节点,所以Ids同时流经FET1和FET2。该电路通过改变Vc的电压值来改变增益。FET工作在饱和区时的跨导gm,Ids与Vgs的关系如图2所示。FET1的栅压Vgs保持不变,则源漏电阻值的变化不会很大,在工作点的阻抗约为10Ω,由欧姆定律可知,V1的电压值由Ids决定。FET2的漏压Vds保持不变,Vc变化时,FET2的栅压相应变化,由图2的曲线可以看出,当栅压变化时,gm会产生变化,FET2的放大倍数则相应改变。同时,FET2的栅压变化时,根据图3,Ids会有较大的变化。根据之前的分析,Ids变化时,V1的值也会相应产生较大的变化,当V1小于1V时,FET1工作在图3中的线性区,增益受漏压影响较大,所以当V1变化时,FET1的放大倍数也会相应变化。这样,FET1和FET2的增益都受Vc的控制,其共同的增益变化量成为功率放大器的增益变化范围。
VIP VIP